

Practical Application of
System Architect OV-3 and
SV-6 Import Methodology

By Larry McCaskill
 Enterprise Architecture SME and CEO,
 Sorcerer Staffing

 2

Publication information
March 2018
Information in this publication is subject to change. Changes will be published in new editions.

Copyright notice
No part of this manual may be reproduced or transmitted in any form or by any means,
electronic or mechanical, without prior written permission from UNICOM® Systems, and
Lawrence P. McCaskill, Sorcerer Staffing.

Trademarks
The following are trademarks or registered trademarks of UNICOM® Systems, Inc. in the United
States or other counties or both: UNICOM®, System Architect®

 3

Contents
About the Author .. 4
Abstract .. 5
Introduction .. 6
Understanding OV-3 Architecture Primitives ... 6

Assumptions / Constraints: .. 12
Meet the Flinstones ... 13

Modifying the System Viewpoint Spreadsheets to Operational Viewpoint Spreadsheets ... 14
Conclusion .. 24
Attachments ... 25

 4

About the Author

Lawrence P. McCaskill
Enterprise Architecture SME and CEO
Sorcerer Staffing
lawrence.mccaskill@gmail.com

Lawrence McCaskill independent consultant and owner of a certified Service
Disabled Veteran Owned Small Business (SDVOSB). He has been working with
UNICOM® System Architect for over 15 years, and is a recognized expert in
Enterprise Architecture theory and implementation using the DoD Architecture
Framework (DoDAF). He has overseen creation of over 100 architecture efforts
supporting the Joint Capabilities Integration and Development System (JCIDS)
and Information Support Plan (ISP) processes, including: F-22A, B-2, MV/CV-22,
E-6, E-2C/D, Joint Light Tactical Vehicle, Predator/Reaper UAV, and many more.
In 2011 he was awarded the DoD Enterprise Architecture Achievement Award
in the Industry Individual category, and was hand-picked by the Joint Staff/J-6
to represent the architecture practitioner’s perspective in the Net-Ready Key
Performance Parameter working group, leading to the rewrite of Chairman of
the Joint Chiefs of Staff Instruction 6212. He was an active participant
developing the Activity Based Methodology (ABM) for DoDAF, and has
developed and provided instruction in tool-neutral DoDAF and DoDAF2
courses.

 5

Abstract

When I read and tried to implement the methodology explained in the whitepaper How to Share
DoDAF2 Data with System Architect, I found that with real-world data, it didn’t work. The
methodology was sound, but didn’t take into account that imported names of artifacts could
only be 80 characters long; artifact names were built by concatenating artifact names from the
OV-3 – with up to 5 items being concatenated, import artifact names “collided” when uploading
spreadsheets as the article instructed. This paper discusses a methodology to prevent that in
99% of the OV-3 entries. Additionally, it discusses the DoDAF 2.0 theory behind “how things fit
together,” so the reader develops an understanding of what is being built via the file imports.

How_to_Share_DoDAF2_Data_with_UNICOM_System_Architect.pdf
How_to_Share_DoDAF2_Data_with_UNICOM_System_Architect.pdf

 6

Introduction
This article describes my discoveries as a result of operationally exercising the methodology
demonstrated in the article How to Share DoDAF 2 Data with System Architect written by Chuck
Faris.

There’s definitely a lot of good information provided in that article, but it assumes the reader
knows a lot about UNICOM® System Architect® DoDAF2 implementation internals. My assertion
is most people using the tool don’t. Most people need some sort of tutorial to get them to the
point where they’re ready to actually use the spreadsheets and methodology Mr. Faris provided.
So… in effect, this is the prequel, and retelling of the story from the Operational View
perspective (where the article written by Chuck Faris demonstrated the Systems Views).

Understanding OV-3 Architecture Primitives
Chuck Faris’s paper assumes one is intimately familiar with the format of the OV-3 that System
Architect produces after all the architecture primitives are populated in the tool (with the OV-3
being a report on what has been modeled in the tool, detailing what Organizations
communicate as a result of the assignment of Activities to the Organization [or Person, who, by
extension, is assigned to an Organization]). This OV-3 format generated in the report that one
is taught to use during the UNICOM® DoDAF2 user training is a bit different than many are used
to seeing. Assuming you have an encyclopedia that has all the Operational Viewpoint primitives
populated (i.e., have followed all the steps for populating the OV-5a/b, OV-4, and OV-2 in the
System Architect DoDAF2 training material), getting to the report isn’t as intuitive as they’ve
made it for the SV’s (which are under Reports > DoDAF2 Reports).

To get to the report and run it from the System Architect menu toolbar:

1. Click Reports > Report Generator
2. Click File > Open Report File
3. Select DAF2.rpt
4. Click OK

Within this set of reports, there is a report name OV-03 ActivityResourceOverlap – Leaf Activity.
The output of this report is similar to what is shown in “Figure 1. OV-03 ActivityResourceOverlap
– Leaf Activity”.

How_to_Share_DoDAF2_Data_with_UNICOM_System_Architect.pdf

 7

Figure 1. OV-03 ActivityResourceOverlap – Leaf Activity

From left-to-right, here’s what’s on the report: Performer Name, Performer Type, Producing
Role, Producing Activity, Operational Data Exchange, Consuming Activity, Consuming Role,
Performer Target, and Performer Type. We’ll examine each of these (Note: the encyclopedia
example depicted within this paper is called “Meet the Flintstones” – it’s unclassified, its
workings are not proprietary, and no one but perhaps Hanna-Barbera can complain that I’m
appropriating their data):

 Performer Source: The Performer performing the Activity. It can be any of the
allowable Performer Types in DoDAF2, but is usually:

o Organization (DM2)
o Person (DM2)
o System (DM2)

 Performer Type: Tells which definition type the Performer is. These are derived from
the definition types within System Architect that are used for Performers. When you
develop your OV-3 for the import files later (you will need to manually populate this
field in your OV-3), expand and look under of Definitions within the Explorer pane, and
observe the artifacts available within a populated encyclopedia (see “Figure 2. System
Architect explorer window”):

 8

Figure 2. System Architect explorer window

In this case, the available Performers are Person (DM2) and Organization (DM2). This
example OV-3 in “Figure 1. OV-03 ActivityResourceOverlap – Leaf Activity” uses Person
(DM2). As previously stated, the other primitive that can be used in this case is System
(DM2), which would represent the case where an Activity is completely automated (i.e.,
not assigned to any human). This isn’t “intuitively obvious” – why I’m showing you this
is to enable you to figure out the text string defining the performer type that we’ll use
later to populate the spreadsheets for import.

 Producing Role: A relationship between Activity and Performer captured in the
ActivityPerformedByPerformer (DM2r) definition. From a dogmatic perspective, I
personally don’t agree that the relationship “Activity performed by Performer” is a Role
(that would be what the Role does, not what the name of the Role is... but I digress…),
but this is the label the implementers of UNICOM® System Architect® have assigned to
this field, so we’re “stuck with it.”

 Producing Activity: The Activity (DM2) producing the exchange.

 Operational Data Exchanges: Contain items of type ActivityResourceOverlap (DM2),
which is a compound definition. This definition captures the assertion that two
Activities require a means to communicate, and has one or more Resources associated
with the pipe between Activities, and is captured by the ActivityResourceOverlap
(DM2r) definition in System Architect. Salient sidebar about Resources and the
ActivityResourceOverlap (ARO):

o The “…one or more Resources associated with the pipe between Activities…”
statement is key: the UNICOM® System Architect® implementation of DoDAF2
treats the line between Activities as a pipe, in that one or more Resources can
be exchanged over the pipe (i.e., the ARO). In its most elegant implementation,
there would only be one unidirectional pipe between any two Activities, with
one-to-many resources traveling over the pipe – this paradigm drives the
capture of the need to communicate to communicate down a level from that in

 9

DoDAF 1.5, where the requirement to communicate was left at the level of the
OV-2. It expressed a need for Roles or Organizations to communicate with one
another, based on the information being exchanged by the Activities assigned to
the Role or Organization (hence the term Needline – it depicts a
communications need between 2 entities). Here, the ARO captures the need to
communicate between specific Activities.

o However, the implementation allows one to have many of these unidirectional
pipes going between Activities. This is how UNICOM® training documentation
instructs users to implement Resources: one Resource per pipe. This enables
the resultant diagrams to appear to be similar to IDEF0 (the modeling notation
most people used to create OV-5’s in DoDAF 1.5). However, because the ARO is
just a pipe, it isn’t the thing being communicated. What is being communicated
is a Resource. The Resource is the focus of who needs to communicate what to
whom.

o To figure out what was being produced in the OV-3 report, when I created the
underlying definitions for ActivityPerformedByPerformer (DM2r) and
ActivityResourceOverlap (DM2r), I used abbreviations within the definitions to
tell me what was being produced in the reports and embedded these in the
names of the artifacts being captured/produced (e.g., the definitions were
preceded by
“APBP: “ for “ActivityPerformedByPerformer” or “ARO: “ for
“ActivityResourceOverlap.” Otherwise, I would have assumed Operational Data
Exchanges in the report is the same thing as the definition Operational
Exchange (DM2) shown in the explorer pane – unfortunately, it’s not the same
thing. Here, what’s labeled Operational Data Exchanges is actually
ActivityResourceOverlap (DM2r), as indicated by the report generating “ARO:
…” for every line.

o Enhancement Request: I’ve asked that UNICOM® provide a different OV-3,
because this report is insufficient for most DoDAFians’ purposes in that it
doesn’t provide Resource-level information, which should be the entire focus of
the OV-3. Stated differently: typical OV-3’s are one Resource per line. What’s in
this report is one ARO per line (which tells one that there is a need to
communicate, but not what is being communicated). I’ve provided UNICOM®
the Report Generator code to get Resource into the report (vs.
ActivityResourceOverlap (DM2r) which is in the report). That said, getting the
Resource Type into the report (e.g., Information (DM2) or Materiel (DM2)) and
get the other fields (Consuming Activity, Consuming Role, Performer Target,
Performer Type) to print as well has been a bridge too far for me. We’ll need to
manually populate these fields in our “for import” OV-3, which we will use later
to build the artifacts to import and create models.

o In the meantime, “Figure 3. UNICOM® System Architect® Report Generator code
to output Resources” is the Report Generator code that gets out Resource
instead of ARO. See your SA guru (or… for a small price… I can help you do it… ;-
)) to get this into your Report Generator as a new report.

 10

REPORT "OV-03 ActivityResourceOverlap - Leaf Activity-Resources"

DESCRIPT "Role=ActivityPerformedByPerformer, Operational Data

Exchange=ActivityResourceOverlap"

ID 52510

{

 FONT "Font4" { NAME "Courier" HEIGHT 12 }

 SETTING { DECIMALSEPARATOR "." }

 SETTING { LISTSEPARATOR "," }

 SETTING { MEASUREMENT ENGLISH }

 SETTING { PAGESIZE -1", 0.00 }

 SETTING { HEADER 1 "OV-03 ActivityResourceOverlap" }

 SETTING { REPORTFORMAT 4 }

 SETTING { OUTPUTFILE "OV-03.htm" }

 SETTING { STYLESHEETFILE "Reports\Stylesht\HTML Tables.xsl" }

 FIELD "Parent of Activities <-- activityParentOfActivity" { SOURCE

PROPERTY "activityParentOfActivity" LENGTH 1200 TYPE MEMO LEGEND "Parent of

Activities" }

 FIELD "Resources <-- Resources" { SOURCE PROPERTY "Resources" LENGTH

1200 TYPE MEMO }

 TABULAR 1

 {

 SELECT "Name" LEGEND "Performer Source" LEGENDFONT Font4

 WHERE Class = Definition

 WHERE "Type Number" = 1372, 1373, 1374, 1367, 1375, 1376, 1377 REM "Performer

Source"

 ORDERBY "Name"

 JOIN

 WHERE REFERENCEDBY = "Performer"

 JOIN

 SELECT "Name" LEGEND "Producing Role"

 WHERE Class = Definition

 WHERE "Type Number" = 1380 REM "ActivityPerformedByPerformer"

 JOIN

 WHERE REFERENCES = "Activity"

 JOIN

 SELECT "Name" LEGEND "Producing Activity"

 WHERE Class = Definition

 WHERE "Type Number" = 1326 REM "Producing Activity"

 WHERE "Parent of Activities <-- activityParentOfActivity" = ""

 JOIN

 WHERE REFERENCEDBY = "producingActivity"

 JOIN

 SELECT "Name" LEGEND "ActivityResourceOverlap", "Resources <-- Resources"LEGEND

"Resources"

 WHERE Class = Definition

 WHERE "Type Number" = 1383 REM "ActivityResourceOverlap"

 JOIN

 WHERE REFERENCES = "consumingActivity"

 JOIN

 SELECT "Name" LEGEND "Consuming Activity"

 WHERE Class = Definition

 WHERE "Type Number" = 1326 REM "Consuming Activity"

 WHERE "Parent of Activities <-- activityParentOfActivity" = "" REM

"activityParentofActivity blank = Leaf Activity"

 JOIN

 WHERE REFERENCEDBY = "Activity"

 JOIN

 SELECT "Name" LEGEND "Consuming Role"

 WHERE Class = Definition

 WHERE "Type Number" = 1380 REM "ActivityPerformedByPerformer"

 JOIN

 WHERE REFERENCES = "Performer"

 JOIN

 SELECT "Name" LEGEND "Performer Target" LEGENDFONT Font4, "Type" LEGEND

"Performer Type"

 WHERE Class = Definition

 WHERE "Type Number" = 1372, 1373, 1374, 1367, 1375, 1376, 1377 REM

"Performer Target"

 }

}

Figure 3. UNICOM® System Architect® Report Generator code to output Resources

 11

The output of this report is shown in Figure 4. OV-3 with Resources.

Figure 4. OV-3 with Resources

 While on the topic of Resources… even though you can import Resource (DM2) into
System Architect, it is not usable within any of the diagrams. This is because it is a
supertype and is not included on any diagram. So, you’ll need to import the
Resource Type appropriate to the Resource exchanged. This is usually of type
Information (DM2) or Materiel (DM2). This is a field in the import spreadsheets, so
it’s a good thing to remember.

 Consuming Activity: The Activity (DM2) consuming the exchange.

 Consuming Role: Consuming ActivityPerformedByPerfromer (DM2r)

 Performer Target: Consuming Performer (see Performer Source above for allowable
types)

 Performer Type: Type of Performer (see Performer Type above).

Knowing how UNICOM® System Architect® views the primitives of the OV-3, there are some key
relationships between artifacts that you need to understand before proceeding.

For the Operational Viewpoint, UNICOM® System Architect® implements the primitives via
relationship definitions (these are denoted with bolded text below) that allow you to build an
OV-3. In this exercise, you’ll import the artifacts piecewise to reverse-engineer the primitives of
the OV-3 to build the artifacts within this model:

 Need Line (DM2rx)
o Has Source/Target that are Performers usually of type:

 Person (DM2)
 Organization (DM2)
 System (DM2)

o Contains: Operational Exchange (DM2rx)
 Has Source/Target: ActivityPerformedByPerformer (DM2r)
 Contains: ActivityResourceOverlap (DM2r), and multiples between

same activities, although redundant, are allowed

 12

 Has Producing Activity/Consuming Activity = Activity (DM2)

 Contains Resources – typical types are:
o Information (DM2)
o Materiel (DM2)

For the Systems Viewpoint, the primitives and relationship definitions mirror the Operational
Viewpoint’s, with some name changes as follows:

 System Resource Flow (DM2rx)
o Has Source/Target that are Performers:

 Person (DM2)
 Organization (DM2)
 System (DM2)

o Contains: System Exchange (DM2rx)
 Has Source/Target that are ActivityPerformedByPerformer (DM2r)

(where Activity (DM2) is replaced by System Function (DM2x) – System
Function is a subtype of Activity – System Function is “that which one
wishes to automate”)

 Contains: System Data Flow (DM2rx), the Systems Viewpoint analog to
ActivityResourceOverlap

 Has Source/Target that are System Function (DM2x)

 Contains Resources – allowable types:
o Data (DM2) primarily…, but also allowable are
o Information (DM2)
o Materiel (DM2)

Assumptions / Constraints:
I would be remiss as an “astute archetype” if I didn’t also mention assumptions and constraints
(these are my AV-2ish declarations) I had regarding this exercise:

 Regarding OV-3:
o In a normal OV-3, the report has one line for each of the following “sideways V”

relationships:
 Organization performing

 Activity produces
o Resource consumed by

 Activity performed by
 Organization

o IF the OV-3 was produced using the Activity Based Methodology (ABM -
which I am a huge proponent of), the OV-3 has:

 Organization contains
 Role (one or more of which can be assigned to a Person)

performing

 Activity produces
o Resource consumed by

 Activity performed by
 Role assigned to

 Organization. The only reason you might not know what the Role is
within the Organization producing/consuming the Resource is in the

 13

case of an External Organization or Service providing/consuming
whatever the Resource is, where you might not have that
detail. Within this exercise, you have the detail of the Role (Person)
in both the internal and external parts of the model, and thus, can
utilize an ABM-ish paradigm for creating the resulting models.

 For Solution Architectures, the OV-3 is only required to report on the exchanges
that occur between internal Activities and external Organizations’ Activities
associated with the solution. Therefore, most OV-3’s do not include internal
crosstalk; stated differently, Resources that flow between Activities internal to the
model are generally not captured in the OV-3 or SV-6. They’ll have to be created
afterwards when you build the Activity model. Therefore, you’ll need to have some
a priori knowledge of what the activity tree looks like. If you don’t all you’ll be able
to create is “everything on one page” for OV-5b Activity Model, and your OV-5a will
be a “flat tree.”

 Key primitives that need to be created (and be defined, unless it’s of type
“relationship”), and the general order in which they are created using this
methodology:

 Information (DM2) (primitive – definition needed)
 Materiel (DM2) (primitive)
 Activity (DM2) (primitive)
 ActivityResourceOverlap (DM2r) (relationship – no definition needed)
 Person (DM2) (primitive)
 Organization (DM2) (primitive)
 ActivityPerformedByPerformer (DM2r) (relationship)
 Operational Exchange (DM2rx) (relationship)
 Need Line (DM2rx) (relationship)

Meet the Flinstones
The encyclopedia I’m using as an example to demonstrate the methodology is called Meet the
Flintstones, it is a Fred-and-Barney centric model, with these Organizations:

 Internal:
o Casa de Flintstone
o Casa de Rubble
o Slate Rock and Gravel Company
o Loyal Order of the Water Buffaloes

 External:
o Bedrock Butcher
o Bedrock Trash Company
o Safestone’s Grocery
o Rock Vendor

Meet the Flintstones has some oddities:

 It has multiple Performers doing the same thing (for example, Betty and Wilma both
order groceries, and Barney and Fred each take out the trash)

 It has the same Performers in multiple Organizations (Barney and Fred are part of: Slate
Rock and Gravel Company; Casa de Flintstone and Casa de Rubble, respectively; and the
Loyal Order of the Water Buffaloes).

 14

 Usually for Enterprise Architectures, one models a person’s Role as Person (DM2)
instead of the instance (person’s name…). However, after creating the model, I realized I
did this for most of the internal “people” in the architecture (Fred, Wilma, Barney, Betty,
etc.). Elaborating on this using Betty Rubble as an example: I modeled Betty Rubble (a
Person instance) as Person (DM2), but I did not model her implied Role type of Grocery
Purchaser. However, since I had no instance information for Butcher or Delivery Guy (as
in: their names), I modeled these Role types as Person (DM2). When this is reported on
in the OV-3, Betty Rubble (instance of Person (DM2)) has Operational Resource
Exchange (DM2rx) of “___ Delivery Order” with Delivery Guy/Butcher (which are Role
types modeled as Person (DM2). It’s a small nuance, but endgame lesson learned: be
careful AND consistent how you model.

 Multiple types of Performers can communicate with non-same-type performers:
o Organization communicates with Organization
o Organization communicates with Person
o Etc.

The point of Meet the Flintstones is to have the encyclopedia put the methodology through its
paces – oddball things like this ARE REAL, and exist as models in many places.

 An OV-4 is pre-created in the tool before importing the spreadsheets we will build using
the OV-3 as a starting point. Thus, Organizations and Performers are pre-known. “Figure
5. OV-4: Meet the Flintstones” shows the OV-4 for Meet the Flintstones. I will provide
XML for this OV-4 with the example spreadsheets that accompany this White Paper.

Figure 5. OV-4: Meet the Flintstones

Modifying the System Viewpoint Spreadsheets to Operational
Viewpoint Spreadsheets

The spreadsheets provided with the How to Share DoDAF2 Data with System Architect paper
were created for importing SV-6 artifacts. These need to modified for use with OV-3 artifacts.
In the paper, the OV-3 is on the left side of each of the import spreadsheets, and the data
provided with the OV-3 is used to build the individual primitives and relationship definitions
used to import into System Architect (via csv import) on the right of each of the spreadsheets.

http://systemarchitect.info/Import_SV-06_XLSX.zip
How_to_Share_DoDAF2_Data_with_UNICOM_System_Architect.pdf

 15

For this paper, the “common” Meet the Flintstones OV-3 is used across all 4 import
spreadsheets. This is shown in “Figure 6. OV-3 used to build import files.”

Figure 6. OV-3 used to build import files

This is definitely not what we’re used to seeing in a DoDAF 1.5 OV-3. However, this mirrors the
OV-3 that would be produced by UNICOM® System Architect® in the DoDAF2 implementation,
and includes all the artifacts you need to build the primitives and relationships in the
subsequent 4 import spreadsheets discussed below. Caveat: Some assembly required… Details:

 Primitives: Assuming the OV-3 was created to match the DoDAF 1.5 specification for
OV-3, the following primitives should be created in the model using the primitives from
the OV-3 in “Figure 6. OV-3 used to build import files”: Performer Source, Producing
Activity, Resource, Receiving Activity, and Performer Target.

 Types: Performer Type and Resource Type are definition types where System Architect
stores the information related to the definitions. Each subsequent spreadsheet import
provides more of the picture that System Architect uses to build primitives and
relationships. For this example:

o Performer Type is either Person (DM2) or Organization (DM2)
o Resource Type is either Information (DM2) or Materiel (DM2)

 Relationships: Producing/Consuming Role (ActivityPerformedByPerformer (DM2r))
and the relationship that states “Activity produces Resource consumed by Activity”
(ActivityResourceOverlap (DM2r)) are compound definitions built using Microsoft XL
functions, including CONCATENATE, VLOOKUP (which were discussed in detail in How to
Share DoDAF2 Data with System Architect), and LEFT. The LEFT function is new. It’s a
key lesson learned from using this methodology in practice. The spreadsheets in the
developerWorks article used the Microsoft Excel CONCATENATE function. This is
perfectly fine if the Performer, Activity, and Resource Names are short. But, this was
proved untenable with concantenated longer names. The UNICOM® System Architect®
Definitions for ActivityResourceOverlap (DM2r), ActivityPerformedByPerformer
(DM2r), Operational Exchange (DM2rx), and Need Line (DM2rx) names are limited to
80 characters. As such, when I tried this with real data, the concatenated names were
longer than 80 characters, and were chopped off to the first 80 characters on import. In

How_to_Share_DoDAF2_Data_with_UNICOM_System_Architect.pdf
How_to_Share_DoDAF2_Data_with_UNICOM_System_Architect.pdf

 16

many cases, this caused the creation of duplicate names on attempt to import the data
(especially in the case of Operational Exchange (DM2rx), which concatenates 5
primitives). This caused the duplicate items not to import, regardless of the instance
information, thereby losing data on import. To fix this problem, Microsoft Excel has
several functions that let you manipulate text strings. The one I chose for this was LEFT,
with the format of LEFT(Cell#, #characters-you-want-of-it). So, the format for the
Activity Resource Overlap was:

=CONCATENATE("ARO: ",

LEFT(D2,24),"_",LEFT(F2,25),"_",LEFT(H2,24))

Which, in this case, resulted in concatenating:
 “ARO: “

 The left 24 characters of contents of the Producing Activity in cell D2 (Order
Groceries)

 The left 25 characters of contents of the Resource in cell F2 (Grocery Order)

 The left 24 characters of contents of the Consuming Activity in cell H2 (Take
Grocery Order)

 Resulting text (80 or less characters): ARO: Order Groceries_Grocery
Order_Take Grocery Order

In this case, none of the LEFT commands affected the text, because they were less than
the character count. However, if one looks at lines 14-16, the LEFT command definitely
had an effect. This fixed about 99% of the import problems in my real-world data. The
only duplications were in the case of two of my receiving Performers having similar
names. In that case, the first line imported won, and I had to recreate the exchange for
the 2nd line. So, on import of the data, trust, but verify.

 Specific column name changes within paper needed to make them work for OV-3
instead of
SV-6 (depicted in the How to Share DoDAF2 Data with System Architect paper):

o Producing Function becomes Producing Activity
o Consuming Function becomes Consuming Activity
o System Data Flow becomes Activity Resource Overlap

Of note… I had a glitch with this one. I initially named it
ActivityResourceOverlap, however, in the spreadsheet that creates
Operational Exchanges, there is a right side field named
ActivityResourceOverlap that System Architect uses to build the
Operational Exchange (DM2rx). On import, System Architect tried to use both
ActivityResourceOverlap fields to build ActivityResourceOverlap (DM2r)’s, and
the results weren’t as expected – lesson learned: be careful with your naming
convention.

 Columns added: The SV spreadsheets only used the System Data Flow, which is
analogous to ARO. Because most OV-3’s list one line per Resource, I added 2 columns:
Resource, and Resource Type to the OV-3.

The four SV spreadsheets provided in conjunction with the original article also need tailoring to
“Operationalize” them, and make them ready for use with OV-3. As part of this article, I will be
providing the 4 import spreadsheets “already built” – however, I’m going to describe how I built
them below. For each spreadsheet, I start with a short description of what the original SV

How_to_Share_DoDAF2_Data_with_UNICOM_System_Architect.pdf

 17

spreadsheet does, and then how to build the OV analog for each. Each spreadsheet needs to
have the OV-3 data copied into the columns to the left of the Name column.

 The spreadsheet From SV-06 - System Data Flow (SV-04).xlsx is used to build System Data
Flow (DM2rx). It provides Source and Target System Functions, and a name for the System
Data Flow.

For OV-3, the analogous definition type to System Data Flow (DM2rx) is
ActivityResourceOverlap (DM2r). – Other changes are:

o Sheet name changes from:

 “From SV-06 - System Data Flow (SV-04).xlsx” to
“From OV-03 – ActivityResourceOverlap (OV-05).xlsx”

 Parenthesis tells one in which diagram type the artifacts being imported are
used

o Because ActivityResourceOverlap already exists in the OV-3, the Name field merely
copies the name, where the SV version builds the name. Remember, the ARO:
naming convention is used to tell what the items are in reports built from the data.

o Column name changes:

 Change “Source” to “Producing Activity”

 Change “Target” to “Consuming Activity”

 Change “System Function (DM2x)” to “Activity (DM2)” in the lookup fields
for each. For example:
=CONCATENATE(VLOOKUP("Activity

(DM2)",Lookup!A2:B32,2),"""",D2,"""")
o Resource Types: Add Information (DM2) and Materiel (DM2) to the lookup tab for

use in the newly created Resources column for import. The function to build its
contents is:

=CONCATENATE(VLOOKUP(G2,Lookup!A2:B32,2),"""",F2,"

""")

 From SV-06 - ActivityPerformedByPerformer (SV-04).xlsx: provides System Function
performed by System assigned System or Organization, and names the
ActivityPerformedByPerformer (APBP).

For OV-3, the relationship is stored in the same definition (ActivityPerformedByPerformer
(DM2r)).

o Change the sheet name
o “From SV-06 - ActivityPerformedByPerformer (SV-04).xlsx” to

“From OV-03 - ActivityPerformedByPerformer (OV-05).xlsx”
o In the Activity column, replace System Function (DM2x) with Activity (DM2) in all

columns. Activity (DM2) is already in the Lookup tab so you don’t need to create it.
o This spreadsheet needs to account for both the Producing and Consuming Role.

Therefore, it requires a set of rows for the Producing APBP, and a second set of rows
for the Consuming APBP.
Note: The column names for the Consuming set of Roles changes because of the
addition of columns for Resource and Resource Type in OV-3.

o Example snapshot: 1 header row and 15 rows of data produces 31 total
rows of data after both the Producing APBP and Consuming APBP are
accounted for. This is shown in “Figure 7. Activity performed by Performer
Spreadsheet.”

 18

Figure 7. Activity performed by Performer Spreadsheet

 System Resource Flow (SV-01).xlsx: provides Source/Target System, and names the
System Interface line going between them.

For OV-3: The analogous definition for System Resource Flow (DM2rx) is Need Line
(DM2rx).

o Change the sheet name from:
“From SV-06 - System Exchange (SV-01z).xlsx” to
“From OV-03 – Operational Exchange (OV-02z).xlsx”

o The name column changes to accommodate the new Resource and
Resource Type columns created in OV-3:
=CONCATENATE(LEFT(A2,36)," TO ",LEFT(J2,36))

o The Perfomer Target Lookup changes to accommodate new Resource and
Resource Type columns:
=CONCATENATE(VLOOKUP(K2,Lookup!A2:B31,2),"""",J

2,"""")

 System Exchange (SV-01z).xlsx: Provides the Sending System/System Function-
Resource-Receiving System/System Function relationship. It is an intermediate
artifact created to automate the creation of SV-6 in SA.

For OV-3: The analogous definition to System Exchange (DM2rx) is Operational
Exchange (DM2rx).

o The sheet name changes from:
“From SV-06 - System Exchange (SV-01z).xlsx” to
“From OV-03 – Operational Exchange (OV-02z).xlsx”

o Name: Concatenates parts of the Performer Source, Producing Activity,
Resource, Consuming Activity, and Performer Target:

 19

=CONCATENATE("OPEX: ",

LEFT(A2,14),"_",LEFT(D2,14),"_",LEFT(F2,14),"_",LEF

T(H2,14),"_",LEFT(J2,14))

I prefer underscores to hyphens as a separator, as I use a lot of hyphens in
artifact names.

o Source/Target: Ensure that the Source/Target point to the correct columns
(Producing Role, Consuming Role)

o “Data Flow” column becomes “ActivityResourceOverlap” – build string
becomes:
=CONCATENATE(VLOOKUP("ActivityResourceOverlap

(DM2r)",Lookup!A2:B32,2),"""",E2,"""")

Need to add “ActivityResourceOverlap (DM2r)” to lookup.
o “System Resource Flow” column becomes “NeedLine” - need to add “Need

Line (DM2rx)” to Lookup, and change VLOOKUP to find the correct
definition:
=CONCATENATE(VLOOKUP("Need Line

(DM2rx)",Lookup!A2:B30,2),"""",LEFT(A2,36)," TO

",LEFT(J2,36),"""")

With these 4 spreadsheets built, you’ll need to export the first worksheet within each
spreadsheet as a comma separated values (.csv) file type so that you can import it into UNICOM®
System Architect®.

To do this within Microsoft Excel:

1. Click File > Save As >
2. Click the down-arrow on Save as type
3. Select CSV (Comma delimited) (*.csv)

It’s time to start importing artifacts. Remember the notional order:

 Information (DM2) (primitive – definition needed for all primitives)
 Materiel (DM2) (primitive)
 Activity (DM2) (primitive)
 ActivityResourceOverlap (DM2r) (relationship – no definition needed)
 Person (DM2) (primitive)
 Organization (DM2) (primitive)
 ActivityPerformedByPerformer (DM2r) (relationship)
 Need Line (DM2rx) (relationship): Note: I changed the order of import of Operational

Exchange and Need Line in practice - I found that only 1/3 of the Need Lines came
through correctly if I didn’t change the order. I have no idea why.

 Operational Exchange (DM2rx) (relationship)

For the items marked primitive above, you’ll need to have separate csv sheets with a Name and
a Definition for each item accounted for in the OV-3. Import these into UNICOM® System
Architect® one at a time (Dictionary > Import Definitions, choose the file, choose the definition
type, and under “Collision option:” choose “Update single fields when data supplied” – this lets
you update individual definitions with relationship data stepwise).

After the imports, and creating the OV-4 as shown, you can go in and create an OV-2. There will
be strange behaviors here, but nothing we can’t overcome with “Stupid Human Tricks” in SA. SA
tries very hard to keep what they call representational consistency intact. If we expand the
Definitions in the Explorer pane, and drag-and-drop all entities in the Organization (DM2) and

 20

Person (DM2) onto the screen, their relationships show up. However, if you recall, Barney and
Fred are in 3 Organizations; you’ll need to copy/paste multiples where applicable – the
“contains” relationship in SA is equivalent to the lines drawn in the OV-4, so SA will gripe if it
thinks you’ve got that relationship wrong. To see what SA thinks is wrong, Reports > Show
Diagram Inconsistencies Report. It will tell you what it thinks is wrong on the right side.

Figure 8 - UNICOM SA Inconsistency Report Output

In most cases, this can be corrected by moving the box out, and back into the container object
(stupid human trick…). R3 is backwards – that’s a bug in the Inconsistencies report – submitted
to UNICOM® already. Nonetheless, after some Feng Shui’ing (Note: there’s no Feng Shui button
in SA…), you’ll note there’s duplicate lines from the 2 instances of Fred Flintstone and Barney
Rubble to the Rubbish remover.

Figure 9 - "Clean" Diagram

 21

These are only applicable to Fred and Barney when they’re home (at Casa de Flintstone and
Casa de Rubble, respectively). To “get rid of” the lines you don’t want to show, select the lines,
right-click, then select “Hide selected Need Line (DM2rx) Relationship Lines…”

In some cases, I’ve also run across instances where the Needline exists, all the sub-definitions
are correct (see picture for these), but it doesn’t render. In this case, draw the Needline, name
it the same as the existing Needline in the definitions, and it will tell you it already exists, and
ask whether you wish to use that definition – say Yes.

Figure 10 - Needline Sub-Definitions Needed to build OV-3 Line Item

Every time you breathe on the diagram, the diagram inconsistency indicators come up. Again,
this is because Fred Flinstone and Barney Rubble are represented twice on the diagram – each
symbol instance is producing a warning that it is not in all the boxes it’s supposed to be in (the
Fred Flinstone in Casa de Flinstone is not in the Loyal Orders of the Buffaloes Lodge; and the
Fred there isn’t in Casa de Flinstone, etc) Reports > Hide Diagram Inconsistency Indicators
“fixes” that problem.

After a fair amount of Feng Shui, all the Needlines called for by the spreadsheets show.

 22

Figure 11. OV-2 Meet The Flintstones

I did not create a fully populated OV-5a and OV-5b model. What I am able to do with the
imported items is to create a “flat” OV-5b (i.e., one diagram with everything on it, vs. a
hierarchical set of diagrams a la IDEF0) that has all the Organizations, associated Performers,
Activities, and ARO lines. It’s an OV-2ish looking diagram, with the ARO’s depicted instead of
the Needlines (analogous to System-to-System relationships allowable in SV-1 diagrams that
always ended up looking like a rat’s nest for anything more complicated than depiction of the
operation of a coffee machine… but… I digress…).

 23

Meet the Flinstones - Scope

Loyal Order of the Water Buffaloes

Loyal Order of the Water Buffaloes Lodge No. 26

General Membership Lodge No. 26

Slate Rock and Gravel
Company

Safestone's Grocery

Rock Vendor

Bedrock Butcher

Bedrock Trash Company

Casa de Flintstone

Casa de Rubble

Casa de RubbleCasa de
Flintstone

President
Lodge No. 26

Receive Loyal Order of the
Water Buffaloes Laws Policies

and Regulations

Send
Water

Buffaloes
Lodge
Dues

Overdue
Notice

Provide
Imperious

and
Insightful
Guidance

Pay Water Buffaloes
Lodge Dues

Receive
Meat

Products

Deliver
Meat

Products

Order
Meat

Products

Take
Rock
Order

Receive
Mail

Take
Butcher
Order

Take
Grocery

Order

Mr. SlateBen Boulder

Fred Flintstone

Barney Rubble

Grand Exalted
Imperial Poobah

Rock Delivery Person

Barney Rubble

Betty Rubble

Butcher

Delivery Guy

Fred Flintstone

Rock
Purchaser

Rock Salesperson

Rubbish Remover

Wilma Flintstone

Receive
Mail

Deliver
Groceries

Deliver
Rocks

Order
Groceries

Order Rocks

Receive
Groceries

Receive
Rocks

Remove
Rubbish

Take
Trash Out

Resources

Loyal Order of the Water Buffaloes Laws, Policies, and Regulations

Resources

Water Buffaloes Lodge Dues Overdue Notice

Resources

Water Buffaloes Lodge Dues

Resources

Butcher Order

Resources

Grocery Order

Resources

Meat Products

Resources

Trash

Resources

Groceries

Resources

Rock Order

Resources

Rocks

Figure 12 OV-5b-“ish” Meet the Flintstones

Some key settings/changes to default settings to make this “somewhat pretty:”

 Organization (DM2): drag-drop Organizations on the page, and Feng Shui until you’re
satisfied.

 24

o Right click > Display Selected Items Conventionally. This allowed me to embed
Performers within Performers

o Right click > Display Mode > Symbol Type On This Diagram > Enabled > leave
everything unselected. Then Save All > Close. This gets rid of the Members and
Performer Members text in the box.

 Person (DM2): drag-drop Performers on the page…
o Right click > Symbol Format > Text Position > Place name outside. Allows one to

move the name as necessary to read it.
 Activity (DM2): drag-drop Activities on the page…

o Right-click > Display Selected Symbols Conventionally. Cleaner looking.
o *maybe* Right-click > Display Selected Symbols With Adornment Without

Resizing. Tells you what type of box it is…
 ActivityPerformedByPerformer (DM2r) lines: are autodrawn for you. Rejoice freely.

o Color them Black to differentiate them from ARO lines.
 ActivityResourceOverlap (DM2r) lines: are autodrawn for you. Rejoice freely.

1. Right-click > Display Mode > Symbol Type On This Diagram > Enabled
2. Choose Resources
3. *may* want to choose “Hide Symbol Name” – this looks goofy, but it tells you

what Resources are traversing the ARO, without showing the ARO name (which
will just confuse the diagram reader anyway…).

4. Save All > Close
o Note: Sometimes this doesn’t work and the only way to make Resources appear

on pre-created lines is to delete the line, recreate the line, recreate all the
references (ARO to Resource, OPEX to ARO), then it works. Service Request
generated with UNICOM®.

 Rectangle: serves as a border around what I considered internal vs. external in this
architecture.

One last note: If you do anything new after these imports (e.g. assert Fred Flintstone orders
Groceries as an APBP), UNICOM® System Architect® (as of: version 11.4.3.4) has a bug with the
Operational Exchange generator (Tools > DoDAF2 Utilities > Generate Operational Exchanges).
If exchanges exist, SA does not generate new ones; you have to either: delete all exchanges and
regenerate them, or manually create the Operational Exchange (DM2rx) and Needline. A
Service Request has been submitted to UNICOM® about this issue.

Conclusion

This paper was intended to be a “prequel” to the UNICOM® whitepaper How to Share DoDAF2
Data with System Architect. The paper provided the reader with a solid knowledge foundation
of the DoDAF 2.0 theory behind “how things fit together,” enabling the reader to understand
what is being built via the file imports, prior to implementing the methodology discussed in both
papers. In doing so, it provided the reader with a new OV-3 report for use in the tool. The
paper also provided updates to the methodology, enabling the import of real-world data
without errors. This enables the reader to reuse previously created OV-3 and SV-6 data in
UNICOM® System Architect®, without encountering errors.

How_to_Share_DoDAF2_Data_with_UNICOM_System_Architect.pdf
How_to_Share_DoDAF2_Data_with_UNICOM_System_Architect.pdf

 25

Attachments
The following attachments are provided with this paper, in the zip file
Attachments_Practical_Application_of_SA_OV-3_and_SV-6_Import_Methodology.zip

 From OV-03 - ActivityPerformedByPerformer (OV-05) - w left.xlsx
 From OV-03 - ActivityResourceOverlap (OV-05) - w left.xlsx
 From OV-03 - Need Line (OV-02) - w left.xlsx
 From OV-03 - Operational Exchange (OV-02z) w left.xlsx
 OV-4 Meet the Flintstones.xml

Attachments_Practical_Application_of_SA_OV-3_and_SV-6_Import_Methodology.zip

